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Abstract
We present a theoretical study of the phase property of the transmission
coefficient of a quantum dot. We model the quantum dot by a cross-bar
structure and take account of electron–electron interactions in the dot in a
self-consistent mean-field approximation. We find that the phase acquired by
electrons traversing the dot increases smoothly by π along a resonance peak
and drops abruptly by π in the tail of the resonant peak, where the probability
of the transmission vanishes. We also show that this sharp phase change cannot
be seen in a model that assumes a single-particle, double-barrier structure only
for the quantum dot.

Recently, a research group at the Weizmann Institute of Science [1, 2] reported two
measurements of the phase of the transmitted electron wave through a quantum dot (QD). A
knowledge of this phase, in addition to the transmission amplitude which can be found from the
conductance [3], is required in order to characterize fully the nature of the electron transport in
such a small quantum system. The first measurement [1] was made using an Aharonov–Bohm
(AB) ring with the QD embedded in one of its arms. Two interesting features were observed
in this measurement: first, the phase of the AB oscillations is discontinuous, i.e. it changes
sharply by π , at every resonance; second, the AB oscillations at various resonances are in
phase. In the beginning, the feature of the phase discontinuity was thought to be striking, since
it cannot be explained by applying the standard Breit–Wigner formula [4] of the transmission
to the QD. However, theoretical investigations [5, 6] motivated by this observation showed
that the phase discontinuity is not an intrinsic property of the QD: it results from the fact that
the measurement was set up with a two-terminal configuration in which the phase of the AB
oscillations is restricted to be either 0 or π by current conservation and time reversal symmetry
and, therefore, an observation of the continuous phase evolution of the transmission of the
QD is not possible. To avoid this phase rigidity, Schuster et al [2] made the second phase
measurement via a four-terminal, double-slit-like interference experiment. This improved
measurement led to the following important observations: (i) The phase acquired by electrons
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traversing the QD increases smoothly by π along a resonance peak, in agreement with the
prediction for the QD using the Breit–Wigner formula. (ii) The phase drops sharply by π
in the tail of the resonant peak, where the probability of the transmission through the QD
vanishes. This abrupt phase drop is now indeed striking and cannot be explained by a theory
that predicts an abrupt change in the phase of the AB oscillations at a transmission peak, but
not at a transmission zero.

Several theoretical models [7–13] have been proposed to explain the phase drops observed
by Schuster et al. It was shown [7], based on an analytical and numerical calculation for QDs
embedded in a narrow quantum wire, that the sharp phase drops occur exactly when the
transmission amplitude vanishes. The result was attributed to the interference between two
different transmission channels with one through a localized state in the dot and the other one
through a continuous state of the quantum wire [7]. Later, it was shown that identical vanishing
of the transmission amplitude occurs generically in quasi-1D systems if the time reversal is a
good symmetry and that the Friedel sum rule is not strictly valid for quasi-1D systems due to
the appearance of the transmission zeros [10,11]. Very recently, models that take some special
properties of the dot states in a semi chaotic situation were also proposed and a mechanism for
the phase drops based on large differences in the coupling of the dot states to the continuous
states of the leads was discussed [12, 13]. In spite of all these theoretical efforts, the question
about a well-accepted, fundamental model for the phase property observed in the experiment
by Schuster et al still remains.

In this paper, we study the phase property of the transmission through a quantum dot
based on the real-space Hubbard Hamiltonian. To be relevant to the experiment by Schuster
et al, it is clear that in the formulation we should avoid using a model that employs an AB
ring with a two-terminal configuration. In principle, the problem can be formulated using a
double-slit-like interference device with a four-terminal configuration. However, this is not
necessary. The central physical issue to be addressed here is actually only the phase evolution
of the transmission coefficient of the QD. Thus, the model we consider is a simple one that
consists of two ideal, non-interacting leads coupled to an interacting QD. We will model the
QD by a quantum cavity, instead of a double-barrier (DB) structure used in, e.g. [14]. As
we will show, this is essential for understanding the phase properties measured by Schuster
et al. The electron–electron interactions in the QD will be treated in a self-consistent mean-
field approximation. This approximation simplifies the problem to the one that can be solved
straightforwardly by using the Fisher–Lee relation [15].

As for calculation, the QD cavity is modelled by a finite piece of interacting (vertically
placed) quantum wire and two ideal wires are placed horizontally on the left- and right-
hand sides of the QD in a cross-bar configuration, We will assign index (0,0) to the cross
site. The QD spans lattice sites (0,−M1), . . . , (0,M2), while the two ideal leads span
sites (−∞, 0), . . . , (−2, 0), (−1, 0) and sites (1, 0), (2, 0), . . . , (∞, 0), respectively. The
Hamiltonian of the system can be written as

H =
∑

n(�=0),σ

εn,0a
†
n,0;σ an,0;σ −

∑
n,σ

t
(
a

†
n+1,0;σ an,0;σ + H.c.

)

+
∑
m,σ

ε0,ma
†
0,m;σ a0,m;σ −

∑
m,σ

t
(
a

†
0,m+1;σ a0,m;σ + H.c.

)

+
∑
m

Ua
†
0,m;↑a0,m;↑a

†
0,m;↓a0,m;↓ . (1)

In the above equation, σ is the spin index, εn,0 and ε0,m are the on-site energies, and t is the
hopping integral which can be related to the lattice constant a and the electron effective mass
m∗ via t = h̄2/2m∗a2. The last term, which contains the Hubbard U , describes the electron–
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electron interactions in the QD. One can then write εn,0 = U0 + 2t and ε0,m = U0 + UD + 2t ,
where U0 is the local potential and UD is the shift of the potential in the QD due to the gate
voltage applied. In the present model, the energy dispersion relation in the ideal leads reads
E(k) = U0 + 2t[1 − cos(ka)], while the electron velocity v in the leads can be found from
h̄v = ∂E/∂k = 2at sin(ka). In this work, we shall take a as the unit of length and t as the
unit of energy.

To link to the experiment, the transmission coefficient sσ for electrons with spin σ needs
to be calculated for the interacting system. In a self-consistent mean-field approximation (in
which the system is described by an effective, single-particle Hamiltonian), the transmission
coefficient sσ can be evaluated using the Fisher–Lee relation [15]. In the present model, the
relation reads

sσ = ih̄v[G(E)]−1σ,1σ (2)

whereG(E) = (E−H +iη)−1 is the effective, single-particle Green function of the interacting
system in the mean-field approximation with its matrix element defined by [G(E)]�′σ,�σ ≡ <

�′, 0; σ |G(E)|�, 0; σ >. In equation (2), we choose to evaluate the Green function G(E)

between the lattice site (−1, 0) and the lattice site (1, 0). It should be noted, however, that
G(E) can be evaluated between any pair of lattice sites chosen from the two leads. For the
system with a cross-bar QD, we find that the Green function appearing in equation (2) can be
written as

[G(E)]−1σ,1σ = �(E)

�∗(E)
[G(E)]0σ,0σ (3)

with

[G(E)]0σ,0σ = [GD(E)]0σ,0σ

1 − [GD(E)]0σ,0σ�(E)
(4)

whereGD(E) denotes the effective, single-particle Green function of the interacting QD when
there is no coupling to the leads, and �(E) = (E − U0 − 2t) − i[4t2 − (E − U0 − 2t)2]1/2

represents the self-energy due to the coupling to the leads. Because of the finite imaginary term
in the self-energy, we do not need to add an infinitesimal imaginary term (iη) to GD(E) when
evaluating equation (4). The Green functionGD(E), in general, depends on the occupation of
the dot and thus the Fermi energy of the system. The prefactor appearing in equation (3) can
be written as�/�∗ = exp(i2ka). Thus, it contributes to sσ only a phase factor corresponding
to that acquired by an electron traversing from site (−1, 0) to site (1, 0) in the system without
the dot.

In the non-interacting case (U = 0), the Green function GD(E) does not depend on the
electron occupation in the dot. It can simply be written as GD(E) = ∑

n |n >< n|/(E− λn),
where λn and |n > are the energy eigenvalues and eigenstates of the non-interacting dot. Thus,
[GD(E)]0σ,0σ has poles at λn unless the projection < 0, 0; σ |n >= 0. When the energy E
sweeps over these poles, [GD(E)]0σ,0σ changes its sign. This implies that [GD(E)]0σ,0σ has
zeros between its poles and, thus, the transmission through the QD exhibits zeros between
resonances.

In the interacting case (U �= 0), although equations (3) and (4) remain unchanged
under a self-consistent mean-field approximation, the local Green function [GD(E)]0σ,0σ now
includes terms derived from the interactions. In this paper, we shall treat the interactions
using the Hartree–Fock (HF) approximation. In this approximation, the on-site energies in the
lattice sites of the QD in the effective, single-particle Hamiltonian HHF are spin dependent,
EHF

0,m;↑ = ε0,m +U < nm↓ > andEHF
0,m;↓ = ε0,m +U < nm↑ >, where< nmσ > is the averaged

occupation number at site (0,m) with spin σ . It follows that the single-particle states are
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diagonal in spin space. However, < nmσ > must now be determined self-consistently from
< nmσ >= ∫ EF

−∞ ρmσ (E)dE where, in terms of the Green functionG(E) = [E−HHF +iη]−1,
the local density of states is given by

ρmσ (E) = − 1

π
Im < 0,m; σ |G(E)|0,m; σ > . (5)

In searching for the self-consistent solutions, we have employed the recursion method. For
the details of the procedure implemented in this work, we refer to [16].

The self-consistent HF solutions can be spin-polarized. However, as far as the phase
measurement [2] is concerned, in which no effect of the spin polarization on the phase property
was observed, it is reasonable to neglect the spin polarization. Thus, we shall, in the following,
confine our discussion only to the spin-unpolarized solutions for which the self-consistent,
single-particle states are spin degenerate and we shall drop the spin variable from now on.

Once the self-consistent solutions are obtained, the local Green function of the decoupled,
interacting dot is calculated from

[GD(E)]0,0 = 1

E − EHF
0,0 −�

(−)
0,0 −�

(+)
0,0

(6)

where �(−)
0,0 and �(+)

0,0 represent the contributions from the lower and upper arms of the QD,
respectively. Using equations (2), (3) and (4), we find that the transmission probability is given
by

T = |s|2 = (E − U0) [4t − (E − U0)] [GD(E)]2
0,0{

1 − [GD(E)]0,0(E − U0 − 2t)
}2

+ [GD(E)]2
0,0[4t2 − (E − U0 − 2t)2]

(7)

and the phase shift of the transmission coefficient due to the presence of the QD by

θ = tan−1 1 − [GD(E)]0,0(E − U0 − 2t)

[GD(E)]0,0
[
4t2 − (E − U0 − 2t)2

]1/2 . (8)

Equations (7) and (8) establish a relationship between the transmission probability and the
phase shift of the transmitted wave via the local Green function [GD(E)]0,0 of the decoupled
dot. It can be shown, in general, that at the poles of [GD(E)]0,0, both the transmission (T ) and
the phase shift (θ ) are finite and continuous. It can also be shown that when [GD(E)]0,0 = 0,
T = 0 but |θ | = π/2 (with θ = −π/2 when [GD(E)]0,0 = 0− and θ = π/2 when
[GD(E)]0,0 = 0+). As a result, the phase shift θ is discontinuous (i.e. it changes abruptly
by π ) at the transmission T = 0 and changes smoothly by π in its passage through a whole
resonant region between two transmission zeros. This property of the phase shift is the same
as measured by Schuster et al.

We first illustrate in figure 1 these fundamental features by the calculations for the system
with a non-interacting QD modelled by a vertical wire of 13 lattice sites. It is seen in the
top panel of figure 1 that the local Green function [GD(E)]0,0 has poles of type (E − λn)

−1

at the energy eigenvalues λn of the decoupled, non-interacting dot and changes its sign when
passing through a zero. It is seen in the middle and bottom panel that the transmission zeros
and the phase drops of π co-occur precisely at the zeros of [GD(E)]0,0. At this point, we
note that the formulation presented in this work can easily be generalized to the case where
a DB structure is included in the system. However, the feature of the abrupt phase drops of
π cannot be obtained in a calculation that assumes a DB structure only for the QD. This is
demonstrated in figure 2, where the calculations for a non-interacting QD, defined only by a
DB structure (i.e. a wire of 13 sites placed horizontally, as opposed to the structure in figure 1,
between two single-site barriers), are plotted. Here, a series of transmission resonances with
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Figure 1. Real part of the local Green function of the decoupled dot (top panel), the transmission
probability (middle panel), and the phase acquired by electrons traversing the dot (bottom panel),
all as a function of the Fermi energyEF in the non-interacting case. The dot modelled by a quantum
wire of 13 lattice sites (M1 = 2 and M2 = 10) is attached to the leads in a cross-bar configuration.
The calculations are done for U0 = 0 and UD = 0. The thin line in the bottom panel is only a
guide for the eyes.

the peak value of one are clearly seen, and when the transmission passes a whole resonant
region the phase changes continuously by π . This property of the phase is well described
by the Breit–Wigner formula. However, no physically meaningful drops in the phase of the
transmission coefficient exist. (The phase drops of 2π seen in the figure are simply due to the
fact that we have folded the calculated phase to the region between 0 and 2π .) This leads us to
conclude that a calculation based on a pure DB model for the QD cannot be used to explain the
phase measurement by Schuster et al. In contrast, we show in figure 3 that the measured phase
property can be obtained when a finite vertical wire is included inside the DB. Here we see
that the shape of the phase evolution is remarkably similar to that measured by Schuster et al.
In fact, the DB structure has a very singular geometry of very little physical relevance to the
measurement. Any slight widening of the region between the barriers leads to a cross-bar-like
geometry. The calculation presented in this paper shows that the electron wave transmitted
through it can exhibit a π -discontinuity in its phase shift, as long as the region is wide enough
so that the local Green function at a site of the QD has two or more poles and zeros between
the poles.

We now focus on the effect of the electron–electron interactions on the phase property of the
transmission. Figure 4 shows a calculation based on the self-consistent formulation described
in this work. Here, we present the calculation only for the structure in figure 1 without a
DB. The calculation shows that transmission peaks, when compared with their corresponding
peaks in the non-interacting case (not shown in this paper), are broadened by the interactions,
as we expected. However, the characteristic phase property of the transmitted wave remains
unchanged: the phase changes continuously by π when the transmission passes a whole peak
region and drops sharply by π when it passes a zero. This is in good agreement with the
measurement by Schuster et al and we expect that the inclusion of a DB in the calculation will
only further improve the agreement (cf figure 3).
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Figure 2. Transmission probability and phase acquired by electrons traversing a non-interacting
dot modelled by a conventional, double-barrier structure as a function of the dot potential (−UD)
at the Fermi energy EF = 2. Each barrier is modelled by a single site with a local barrier potential
UB = 4. The wire placed between the barriers in an in-line configuration has 13 lattice sites with
the local potential U0 = 0.
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Figure 3. Transmission probability and phase acquired by electrons traversing a non-interacting
dot modelled by a cross bar plus a double barrier as a function of the dot potential (−UD) at the
Fermi energy EF = 2. The cross-bar structure is the same as in figure 1, while the two single-site
barriers with a local barrier potential UB = 4 are located at lattice sites immediately to the left and
right of the cross bar.

Finally, we note that we have so far presented the analysis only for the situation in which
only one propagating channel is open for conduction in the left- and right-hand leads. The
analysis can be generalized to the situation of having multiple open channels in the leads
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Figure 4. Transmission probability and phase acquired by electrons traversing an interacting
quantum dot with the Hubbard U = 1.5 as a function of the dot potential (−UD) at the Fermi
energy EF = 0.6. The dot structure is exactly the same as in figure 1 and the electron–electron
interaction in the dot is included in the Hartree–Fock approximation. The marks are calculations,
while the dashed lines are only guides for the eyes.

by introducing, in equation (1), multiple-valued on-site energies, various additional hopping
integrals between the leads and QD, as well as various additional interactions within the QD.
We would also like to comment on the role of the spin correlation, which is not included in
the present model. Very recently, the phase evolution of electrons as they traverse a Kondo-
correlated system was measured [17]. It was found that the phase evolution shows a specific
feature which is highly sensitive to the onset of Kondo correlation. Generalization of the
present model towards an explanation of this very recent observation is in progress.

In summary, we have presented a theoretical study for the phase of the transmission
coefficient of a QD embedded in a quantum channel. We have modelled the QD with a
multiple energy-level system and have taken account of electron–electron interactions in the
dot in a self-consistent mean-field approximation. Our study has shown that the phase acquired
by electrons traversing the QD increases smoothly by π along a transmission resonance and
has a discontinuity of π in the tail of the resonance where the transmission probability through
the QD vanishes. We have also shown that the physical phase discontinuity does not appear
in a calculation using a single-particle DB model for the QD.
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[11] Taniguchi T and Büttiker M 1999 Phys. Rev. B 60 13 814
[12] Silverstrov P G and Imry Y 2000 Phys. Rev. Lett. 85 2565
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